428

Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3

Le Sage, V., Cinti, A., & Mouland, A. J., (2016). Proximity‐dependent biotinylation for

identification of interacting proteins. Current Protocols in Cell Biology, 73, 17–19.

Lilley, K. S., & Dupree, P., (2007). Plant organelle proteomics. Current Opinion in Plant

Biology, 10, 594–599.

Longuespee, R., Fleron, M., Pottier, C., Quesada-Calvo, F., Meuwis, M. A., Baiwir, D.,

Smargiasso, N., et al., (2014). Tissue proteomics for the next decade? Towards a molecular

dimension in histology. Omics: A Journal of Integrative Biology, 18, 539–552.

Maruyama, K., Sakuma, Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., Shimada, Y., et al.,

(2004). Identification of cold‐inducible downstream genes of the Arabidopsis DREB1A/

CBF3 transcriptional factor using two microarray systems. The Plant Journal, 38, 982–993.

Maurel, C., & Chrispeels, M. J., (2001). Aquaporins. A molecular entry into plant water

relations. Plant Physiol., 125, 135–138.

McNeil, S. D., Nuccio, M. L., & Hanson, A. D., (1999). Betaines and related osmoprotectants.

Targets for metabolic engineering of stress resistance. Plant Physiology, 120, 945–949.

Millar, A. H., Heazlewood, J. L., Kristensen, B. K., Braun, H. P., & Møller, I. M., (2005). The

plant mitochondrial proteome. Trends in Plant Science, 10, 36–43.

Mitoma, J. Y., & Ito, A., (1992). The carboxy‐terminal 10 amino acid residues of cytochrome

b5 are necessary for its targeting to the endoplasmic reticulum. The EMBO Journal, 11,

4197–4203.

Morkunaite-Haimi, S., Vinskiene, J., Staniene, G., & Haimi, P., (2018). Efficient isolation

of chloroplasts from in vitro shoots of malus and prunus. Zemdirbyste-Agriculture, 105,

171–176.

Munns, R., & Tester, M., (2008). Mechanisms of salinity tolerance. Annual Review of Plant

Biology, 59, 651–681.

Nanjo, Y., Skultety, L., Ashraf, Y., & Komatsu, S., (2010). Comparative proteomic analysis of

early-stage soybean seedlings responses to flooding by using gel and gel-free techniques.

Journal of Proteome Research, 9, 3989–4002.

Nouri, M. Z., & Komatsu, S., (2010). Comparative analysis of soybean plasma membrane

proteins under osmotic stress using gel-based and LC-MS/MS based proteomics approaches.

Proteomics, 10, 1930–1945.

Pandey, A., Chakraborty, S., Datta, A., & Chakraborty, N., (2008). Proteomics approach

to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.).

Molecular & Cellular Proteomics, 7, 88–107.

Petrovska, B., Jerabkova, H., Chamrad, I., Vrana, J., Lenobel, R., Urinovska, J., Sebela, M.,

& Dolezel, J., (2014). Proteomic analysis of barley cell nuclei purified by flow sorting.

Cytogenet Genome Res., 143(1–3), 78–86.

Pitkanen, L., Tuomainen, P., & Eskelin, K., (2014). Analysis of plant ribosomes with

asymmetric flow field-flow fractionation. Analytical and Bioanalytical Chemistry, 406,

1629–1637.

Printz, B., Morais, R. D., Wienkoop, S., Sergeant, K., Lutts, S., Hausman, J. F., & Renaut,

J., (2015). An improved protocol to study the plant cell wall proteome. Frontiers in Plant

Science, 6, 237.

Qiu, Q. S., Guo, Y., Quintero, F. J., Pardo, J. M., Schumaker, K. S., & Zhu, J. K., (2004).

Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly­

sensitive (SOS) pathway. Journal of Biological Chemistry, 279, 207–215.